
Pergamon 
Journal of Structural Geology, Vol. 19, No. 6, pp. 893 to 896, 1997 

0 1997 Elsevier Science Ltd 
All rights reserved. Printed in Great Britain 

PII: s0191-8141(97)0001%8 0191-8141/97 $17.00+0.00 

Brevia 

SHORT NOTE 

A velocity description of constant-thickness fault-propagation folding 

STUART HARDY* 

Institute of Earth Sciences (Jaume Almera), Consejo Superior de Investigaciones Cientificas (CSIC), 
Lluis Sol& i Sabaris s/n, 08028 Barcelona, Spain 

(Received 21 August 1996; accepted in revisedform 15 January 1997) 

Abstract-The expression of the geometric model of constant-thickness fault-propagation folding as a velocity 
description of deformation allows the derivation of rates of displacement, uplift and fault propagation. The velocity 
model of fault-propagation folding and sedimentation are combined in a finite-difference scheme, and two examples 
of growth strata associated with overturned fold forelimbs illustrate the application of the model. 0 1997 Elsevier 
Science Ltd 

INTRODUCTION 

Since their introduction by Suppe and Medwedeff (1990) 
and Mitra (1990), the fixed-axis and constant-thickness 
fault-propagation fold models have been used extensively 
(e.g. Suppe et al., 1992; Hardy and Poblet, 1995; Zapata 
and Allmendinger, 1996). In the fixed axial-surface 
model, thinning or thickening is allowed in the front 
limb of the fold while maintaining area. In the constant- 
thickness model, bed length and layer thickness are 
everywhere preserved. Constant-thickness folds have 
been suggest as being more common in the rock record 
(Suppe and Medwedeff, 1990). The constant-thickness 
theory allows overturned limbs, commonly seen in 
natural examples, to develop but the geometries of 
growth strata associated with such structures have only 
recently been investigated (Zapata and Allmendinger, 
1996). Suppe and Medwedeff (1990) derived the basic 
equations of the constant thickness theory based upon 
the stratigraphic height (h) between the fault bend and 
the fault tip (Fig. 1). They went on to derive relationships 
between fault slip and front and backlimb length (Suppe 
et al., 1992). However, for constant-thickness fault- 
propagation folds the backlimb length is only equal to 
the fault length when the step-up angle is 29”, a situation 
likely to occur in only a small fraction of natural 
examples. Therefore, there is no direct way of deriving 
the fault length for a given amount of slip and, thus, rates 
of fault propagation to fault slip for the majority of 
examples. In order to construct a velocity model of 
deformation, in which the rate and direction of displace- 
ment of material points are specified, such information is 
essential. It allows the definition of velocity domains, 
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within which horizontal and vertical velocities are 
constant, as the fault accumulates slip (Fig. 1). Thus, 
rates of displacement within the structure and uplift 
above the structure can be derived. This Short Note 
presents a method for deriving such relationships without 
prior knowledge of stratigraphic height and derives a 
velocity model of constant-thickness fault-propagation 
folding. This velocity model of deformation can be 
combined with other rate-dependent processes, such as 
erosion, sediment transport and sedimentation, to model 
more realistic growth strata geometries than simple 
geometric models (e.g. Hardy and Poblet, 1995). Two 
examples of growth strata associated with constant- 
thickness fault-propagation folding illustrate the applica- 
tion of the model. 

CONSTANT-THICKNESS FAULT-PROPAGATION 
FOLDING 

In order to define the geometry of a constant-thickness 
fault-propagation fold several steps must be undertaken. 
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Fig. 1. The geometric model of constant-thickness fault-propagation 
folding of Suppe and Medwedeff (1990) with the controlling parameters 

illustrated for a ramp of 20” together with the four velocity domains. 
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First, one must solve the fundamental equation for linearly from 1.55 to 2.0, whereas above this angle the 
simple-step constant-thickness fault-propagation folding ratio increases rapidly with step-up angle reaching a 
(Fig. 1) with no external shear+quation (12) of Suppe value of 5.25 at 50”. 
and Medwedeff (1990): Thus, for a given fault geometry and slip rate, the rate 

1 + 2 cos$* + cos e2 - 2 = o 
of fault propagation and the orientations of all active 

sin 2y* sin e, (1) axial surfaces are known (Fig. 1). Velocities can now be 
derived for each of the domains shown in Fig. 1. It is 

which for a known value of f& (the fault step-up angle) important to note that there are four distinct velocity 

gives y*, the fold core interlimb angle. Knowing that domains above the thrust, separated by active axial 
surfaces (Fig. 1). In domain 1 displacement is parallel to 

yi = 90 - e22/2, (2) the lower decollement, in domain 2 displacement is 

where yi is the backlimb axial-surface angle, the front 
parallel to the thrust ramp, and in domains 3 and 4 

limb axial-surface angle, y, can be then be found from 
displacement is parallel to the leading active axial surface. 
The horizontal (u) and vertical (v) velocities in the four 

y=9o+y*-Yl. (3) domains are then given by: 

Thus p2, the angle between the fault and the front limb, Domain 1 u=s (9) 

is found from 
v=o 

82 = 180 - 2y*. (4) 
(10) 

In contrast to geometric models, in which the config- 
uration of the fold is found by working from a known 
value of h, we need to derive the length of the fault, L, the 
cutoff height, h, and the length between the fault tip and 
the anticlinal branching point, ef, for a given amount of 
slip st. The cutoff height, h, can be found from 
(rearranging equation 11 of Suppe et al., 1992) 

1 

(5) Domain 4 U= R2 Scos(y) (15) 

v = RZ S sin(y), (16) 
and the length, ef, is given by (simplifying equation 4 of 
Suppe and Medwedeff, 1990) where S is the slip rate, ~9~ is the thrust ramp angle, R, and 

R2 are changes in slip and y is the inclination of the 
leading active axial surface. Between regions 1 and 2 there 
is no change in slip as the active axial surface is the 

Domain 2 

Domain 3 

U = s cos(&) (11) 

v = S sin(&) (12) 

u = R, Scos(y) (13) 

v = Ri S sin(v) (14) 

It is clear from Fig. 1 that the length of the fault, L, is 
bisector of the fault bend. However, between regions 2 

given by 
and 3 and regions 2 and 4 there must be a change in slip 
across the velocity boundaries (active axial surfaces). The 
boundary between regions 2 and 4 runs along the line ef 
which connects the fault tip and the anticlinal branching 

L = h/sin(&). (7) point (Mosar and Suppe, 1992). The slip ratios between 

combining equations (5) and (7) and simplifying, we 
these regions (RI and R2) are given by 

obtain R 
1 

= s.in(yi + Y) 

sm(yi + Q2> 
(17) 

L= 
St 

[ 
1-. 

sin e2 . (8) 

sm(2y - 02) 1 R 

2 
= sin(& - 6 + y> 

sin(&) 
(18) 

For a given step-up angle the relationship between the following the approach given in Suppe et al. (1992). 
length of the fault and amount of slip is constant and 
needs only to be calculated once. The ratio of these values 
(fault length/fault slip) is equivalent to a fault propaga- GROWTH STRATA ASSOCIATED WITH 
tion to slip ratio (Williams and Chapman, 1983). Ratios CONSTANT-THICKNESS FAULT-PROPAGATION 
of fault propagation to fault slip for step-up angles in the FOLDING 
range 10-50” are shown in Fig. 2. From this figure it can 
be seen that for step-up angles from 10” to 29” the ratio of To illustrate the manner in which the velocity model 
fault propagation to fault slip increases approximately described above may be used, two examples of growth 
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Fig. 2. The ratio of fault propagation to fault slip for simple-step constant-thickness fault-propagation folds for a range of 

values of step-up angle. Note that for higher step-up angles, a fault will propagate faster for a given amount of slip. 

strata associated with constant-thickness fault-propaga- 
tion folding are shown. The examples presented in this 
section have been modelled using a finite-difference 
approach described previously by Waltham and Hardy 
(1995). The tectonic deformation is modelled using the 
velocity description of deformation described above, 
while both background sedimentation and local erosion, 
transport and sedimentation are also modelled for the 
top surface in any two-dimensional numerical model. 
The methodology applied to compressional growth 
structures is described in detail in Hardy and Poblet 
(1995). A Eulerian finite-difference scheme is needed for 
the combination of tectonics and sedimentation for the 
topmost surface, while the deformation of buried 
surfaces is modelled using a simple Lagrangian scheme. 
This avoids any numerical diffusion or dispersion, and is 
particularly useful when steep or overturned surfaces are 
developed as a result of deformation (see Fletcher, 
1991). 

In the models described below sedimentation can be 
the result of two distinct processes: (1) background 
sedimentation; and (2) local erosion, transport and 
deposition. Background sedimentation is considered to 
be a non-locally sourced sedimentation rate, which 
occurs everywhere below a specified base level. Local 
erosion, transport and sedimentation are modelled in the 
example where uplift exceeds burial using a diffusion 
mechanism in which sediment flux is proportional to 
local slope. The diffusion model results in material being 
eroded and transported away from any steep slopes 
which develop during a model run. Mathematical details 
are given in Hardy and Poblet (1995). 

In both examples a step-up angle of 20” is used with a 
slip rate of 1 m/ka over a total run time of 1 Ma. Growth 
strata are recorded at intervals of 200 ka. In the first 
example only background sedimentation is modelled, 
with background sedimentation occurring at a rate of 
1 m/ka which is greater than the uplift at the crest of the 
fold (Fig. 3a). It can be seen that this example possesses 
an overturned forelimb in both pre-growth and growth 
strata, and a series of complex growth axial surfaces. This 
is particularly marked on the forelimb and crest of the 
structure, where the kinematics are quite complex. For 
low step-up angles, such as this example, material rolls 
onto the crest of the structure producing the complex 
relationships observed. A more realistic model is pre- 
sented in Fig. 3(b), where all model parameters are 
identical except that the base level rise and background 
sedimentation rate are both reduced to 0.4 m/ka and a 
diffusion coefficient of 1.0 m’ja is used to simulate local 
erosion, transport and sedimentation. This is a situation 
commonly observed in many fault-related folds where 
structures uplift faster than the local sedimentation rate 
and form a topographic high (cf. Zapata and Allmendin- 
ger, 1996). The value of the diffusion coefficient appears 
to depend on a variety of factors such as climate, 
lithology and scale (Kooi and Beaumont, 1994). The 
value used here was chosen because it illustrates well the 
distinctive features caused by the interaction of tectonics 
and sedimentation in this setting. Note the deep erosion 
on the crest and backlimb of the structure, and the onlap 
of growth strata onto this erosion surface. Also worth 
noting is the difficulty in distinguishing between growth 
and pre-growth strata on the forelimb of the structure, as 
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Fig. 3. Examples of growth strata associated with constant-thickness fault-propagation folding: (a) base level rise and 
sedimentation greater than uplift rate above the structure; and (b) base level rise less than uplift rate above the structure 
together with a diffusion model of erosion, transport and sedimentation. No vertical exaggeration. Model parameters are 

given in the text. 

this is now a region of uplift and erosion and the strata do 
not interact with an active axial surface on the crest of the 
structure. 

CONCLUSIONS 

This Short Note has derived a velocity description of 
constant-thickness fault-propagation folding and a 
simple expression relating fault propagation to fault 
slip. The power of this approach is that it is consistent 
with previous geometric approaches but also allows 
rates of fault propagation and uplift to be derived given 
an external slip rate. The derived velocities can then be 
used in simple mathematical models to test the 
geometric consequences of such kinematics within 
both growth and pre-growth strata (cf. Hardy and 
Poblet, 1995). The inverse problem, determining rates 
of fault propagation and fault slip, can also be 
approached if geometric and age constraints are 
available for a given structure. 
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